Comparison of retention on traditional alkyl, polar endcapped, and polar embedded group stationary phasesThe development of new RP stationary phases containing polar groups has provided the chromatographer with a variety of stationary phase choices with differing selectivities. Polar endcapped and polar embedded group stationary phases have found use in solving a wide variety of separation problems, especially for the efficient separation of organic bases as well as separations necessitating the use of highly aqueous mobile phases. In this report, the retention thermodynamics of small, nonpolar solutes on traditional alkyl, polar endcapped, and polar embedded group stationary phases are compared. It is found that the nonpolar (methylene) transfer enthalpy is less favorable when polar embedded group phases are used, when compared to traditional or polar endcapped phases. In contrast, the transfer enthalpy of a phenyl group is found to be more favorable when a polar endcapped phase is used. In addition, the retention characteristics of these phases are compared using a set of solutes with differing solvatochromic parameters. Hydrogen-bond acids appear to have enhanced retention on polar embedded group phases, while hydrogen-bond bases have enhanced retention on polar endcapped phases.