Ionically conducting lanthanum fluoride (LaF3), displaying a nanoscopic lamellar structure, has been synthesized at the surface of an aqueous solution of LaCl3 and HF. The structure and the chemical composition of the conductor have been analyzed by SEM, electron probe microanalysis, X-ray powder diffraction, FTIR, and (19)F magic angle spinning nuclear magnetic resonance (NMR) spectroscopy. The fluorine dynamics have been studied by NMR diffusometry and relaxometry in a temperature range from room temperature up to 875 K. The fluorine self-diffusion coefficient of the nanostructured LaF3 is about two orders of magnitude larger than that of bulk LaF3. This novel material is highly promising for many typical applications of fluorine ionic systems.