An automatic control strategy for forward speed in the planting process is proposed to improve the fuel economy and reduce the labor intensity of drivers. Models of tractors with power-shift transmission (PST) and a precise pneumatic planter with an electric-driven seed metering device are built as research objects and simulated using Matlab with Simulink. The economic comprehensive control strategies for forward speed, including gear-shift schedule and cruise control strategy, are developed. Four levels control mode with different fuel economy performances are implemented to meet different driver or operation condition requirements. In addition, the control strategy is developed for the seed-metering device motor to maintain the required seed spacing in planting. Finally, the fuel economy and effectiveness of the control strategies for forward speed and planting quality are verified by simulations with Matlab/Simulink and Matlab/Stateflow. The simulation results verify the satisfactory performance of the proposed control strategies. The error of seed spacing is less than 3% when planting with speed fluctuation. Under the premise of ensuring planting quality and driver's demands, the cruise control strategies for forward speed have more significant effects on the fuel economy than previous cruise control strategies. Furthermore, the control mode with higher level has better fuel economy and a larger speed deviation range.