In the present work, the kinetics of the extraction process from female inflorescences of Canapa sativa subsp. sativa var. sativa were studied, on the basis of determination of the content of cannabinoids: cannabidiolic acid (CBDA), Δ9-tetrahydrocannabinolic acid (THCA), cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), before and after decarboxylation in the oven, in order to evaluate the possible use of the hemp extract obtained in the food sector. Therefore, both conventional maceration (CM) and rapid solid-liquid dynamic extraction (RSLDE), also known as cyclically pressurized extraction (CPE), were carried out, using parts of the plant approximately of the same size. The alcoholic extracts thus obtained were analyzed by high-performance liquid chromatography (HPLC) in order to calculate the percentages of cannabinoids present in the inflorescences and thus be able to evaluate the degree of decarboxylation. Furthermore, the extracts were dried to calculate the percentage of solid material present in it, that was made mainly by cannabinoids. The amount of substance extracted from the inflorescences was about 10% (w/w), for both cases considered. Therefore, the extraction yield was the same in the two cases examined and the final qualities were almost identical. However, the extraction times were significantly different. In fact, the maceration of hemp inflorescences in ethyl alcohol was completed in no less than 24 h, while with the RSLDE the extraction was completed in only 4 h. Finally, for a better understanding of the extraction process with cyclically pressurized extraction, a numerical simulation was carried out which allowed to better evaluate the influence of extractive parameters.