Inadequate information on physiochemical properties of faecal sludge leads to inappropriate design of pit emptying devices and poor faecal sludge disposal contributing to environmental pollution. This study undertook a critical analysis of physiochemical properties of feacal sludge that influence design and performance of pit emptying devices and faecal sludge disposal for improved faecal sludge management in urban slums. The physiochemical properties determined were; Moisture content (MC), ash content (AC), total solids (TS), volatile solids (VS), nitrogen (N), phosphorous (P), potassium (K) and pH. Samples were collected from 55 unlined pits at depths of 0, 0.5, 1 and 1.5 m from pit surface. The unlined pits in this study were purposively selected from slums in Kampala. A sample of 300 g was sucked from each depth using a manual sampling tool and emptied into a plastic container. The container was then wrapped in a black plastic bag and transported in cooler boxes to the lab for analysis. The properties were subjected to Principal Component Analysis to isolate the critical parameters that affect pit emptying and faecal sludge disposal. The mean results were: MC of 86 ± 8.37%; TS of 0.14 ± 0.08 g/g wet sample; VS of 0.73 ± 0.32 g/g dry sample; pH of 8.0 ± 1.5; AC of 0.35± 0.18 g/g dry sample; TN of 3.5 ± 0.08%; K of 2.2± 0.13% and P of 1.4± 0.05%. It was concluded that physiochemical properties in Ugandan pits are comparable to those of global pits except for the acidic conditions at top surface in some pits, and higher moisture content in pits due to the high water table. PCA results showed that moisture content and total solids affected pit emptying techniques while fractional content of N, P and pH affect most choice of faecal sludge disposal technique.