Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Актуальность исследованияобусловлена тем, что тепловая защита оборудования и трубопроводов играет важную роль при проведении энергосберегающих мероприятий на объектах различного назначения, а рост уровня потерь теплоты или холода при транспортировке энергоносителей является причиной создания новых подходов к энергосберегающим мероприятиям при выполнении теплоизоляционных работ. Известно, что основным методом снижения потерь тепловой энергии при ее транспортировке и хранении является применение высокоэффективных теплоизоляционных материалов. Таким материалом является тонкопленочная тепловая изоляция. Уникальные теплофизические характеристики тонкопленочных теплоизоляционных покрытийпозволяют использовать их в различных энергетических системах и оборудовании. Несмотря на это технологии применения тонкопленочных теплоизоляционных покрытий к настоящему моменту времени не получили развития. Это объясняется рядом причин, основными из которых являются: недостаток знаний о физических свойствах и механизмах процессов тепломассопереноса в тонкопленочных теплоизоляционных покрытиях. Цель: исследование кондуктивно-конвективного теплопереноса в слое тонкопленочных теплоизоляционных покрытий с учетом разнородности свойств микросфер и связующих веществ. Объект: цилиндрическийслойтонкопленочных теплоизоляционных покрытий. На внутренней и внешней поверхностях тонкопленочных теплоизоляционных покрытий поддерживаются постоянные температуры. Геометриятонкопленочных теплоизоляционных покрытий представляла собой связующее вещество и полые микросферы. Исследования проводились для слоя тонкопленочных теплоизоляционных покрытий толщиной 0,33 мм. Температуры на внутренней и внешней поверхностях тонкопленочных теплоизоляционных покрытий принималась в соответствии с экспериментальными данными. Предполагалось, что слой тонкопленочных теплоизоляционных покрытий на 62 % состоит из микросфер диаметром 50 мкм и на 38 % из связующего вещества. Рассматривались два типа полых микросфер с толщинами стенок 5 и 2 мкм. Методы. Решение поставленной задачи получено методом конечных элементов. Использовалась аппроксимация Галеркина, неравномерная конечно-элементная сетка. Параметры элементов сетки выбирались из условий сходимости решения. Увеличение числа элементов расчетной сетки проводилось с использованием метода Делоне. Результаты.Выявлено влияние на тепловые потери вида связующего вещества и характеристик микросфер, толщины стенки микросферы и газовой фазы, содержащейся в полости микросферы. Для рассматриваемого случая отклонение от экспериментальных данных составило до 90 % в зависимости от состава тонкопленочных теплоизоляционных покрытий.Анализ результатов численного моделирования теплопереноса в слое тонкопленочных теплоизоляционных покрытий для кондуктивно-конвективной и кондуктивной моделей показал, что расхождение между ними не превышает 3 %и объясняется погрешностями численных расчетов. По этой причине в практических расчетах можно использовать более простую кондуктивную модель теплопереноса.
Актуальность исследованияобусловлена тем, что тепловая защита оборудования и трубопроводов играет важную роль при проведении энергосберегающих мероприятий на объектах различного назначения, а рост уровня потерь теплоты или холода при транспортировке энергоносителей является причиной создания новых подходов к энергосберегающим мероприятиям при выполнении теплоизоляционных работ. Известно, что основным методом снижения потерь тепловой энергии при ее транспортировке и хранении является применение высокоэффективных теплоизоляционных материалов. Таким материалом является тонкопленочная тепловая изоляция. Уникальные теплофизические характеристики тонкопленочных теплоизоляционных покрытийпозволяют использовать их в различных энергетических системах и оборудовании. Несмотря на это технологии применения тонкопленочных теплоизоляционных покрытий к настоящему моменту времени не получили развития. Это объясняется рядом причин, основными из которых являются: недостаток знаний о физических свойствах и механизмах процессов тепломассопереноса в тонкопленочных теплоизоляционных покрытиях. Цель: исследование кондуктивно-конвективного теплопереноса в слое тонкопленочных теплоизоляционных покрытий с учетом разнородности свойств микросфер и связующих веществ. Объект: цилиндрическийслойтонкопленочных теплоизоляционных покрытий. На внутренней и внешней поверхностях тонкопленочных теплоизоляционных покрытий поддерживаются постоянные температуры. Геометриятонкопленочных теплоизоляционных покрытий представляла собой связующее вещество и полые микросферы. Исследования проводились для слоя тонкопленочных теплоизоляционных покрытий толщиной 0,33 мм. Температуры на внутренней и внешней поверхностях тонкопленочных теплоизоляционных покрытий принималась в соответствии с экспериментальными данными. Предполагалось, что слой тонкопленочных теплоизоляционных покрытий на 62 % состоит из микросфер диаметром 50 мкм и на 38 % из связующего вещества. Рассматривались два типа полых микросфер с толщинами стенок 5 и 2 мкм. Методы. Решение поставленной задачи получено методом конечных элементов. Использовалась аппроксимация Галеркина, неравномерная конечно-элементная сетка. Параметры элементов сетки выбирались из условий сходимости решения. Увеличение числа элементов расчетной сетки проводилось с использованием метода Делоне. Результаты.Выявлено влияние на тепловые потери вида связующего вещества и характеристик микросфер, толщины стенки микросферы и газовой фазы, содержащейся в полости микросферы. Для рассматриваемого случая отклонение от экспериментальных данных составило до 90 % в зависимости от состава тонкопленочных теплоизоляционных покрытий.Анализ результатов численного моделирования теплопереноса в слое тонкопленочных теплоизоляционных покрытий для кондуктивно-конвективной и кондуктивной моделей показал, что расхождение между ними не превышает 3 %и объясняется погрешностями численных расчетов. По этой причине в практических расчетах можно использовать более простую кондуктивную модель теплопереноса.
Актуальность исследования обусловлена тем, что тепловая защита оборудования и трубопроводов играет важную роль при проведении энергосберегающих мероприятий на энергетических объектах различного назначения, а рост уровня потерь тепла или холода при транспортировке энергоносителей является причиной создания новых подходов к энергосберегающим мероприятиям при выполнении теплоизоляционных работ. Известно, что основным методом снижения потерь тепловой энергии при ее транспортировке и хранении является применение высокоэффективных теплоизоляционных материалов. Таким материалом является тонкопленочная тепловая изоляция. Уникальные теплофизические характеристики тонкопленочных теплоизоляционных покрытий позволяют использовать их в различных энергетических системах и оборудовании. Несмотря на это технологии применения тонкопленочных теплоизоляционных покрытий к настоящему моменту времени не получили развития. Это объясняется рядом причин, основными из которых являются: недостаток знаний о физических свойствах и механизмах процессов тепломассопереноса в тонкопленочных теплоизоляционных покрытиях. Цель: исследование кондуктивно-конвективно-радиационного теплопереноса в слое тонкопленочной тепловой изоляции с учетом разнородности свойств микросфер и связующих веществ. Объект: цилиндрический слой тонкопленочного теплоизоляционного покрытия. На внутренней и внешней поверхностях теплоизоляционного покрытия поддерживаются постоянные температуры. Геометрия тонкопленочного теплоизоляционного покрытия представляла собой связующее вещество и полые микросферы. Исследования проводились для слоя теплоизоляции толщиной 0,33 мм. Температура на внутренней и внешней поверхностях изоляции принималась в соответствии с экспериментальными данными. Предполагалось, что слой тонкопленочной теплоизоляции на 62 % состоит из микросфер диаметром 50 мкм и на 38 % из связующего вещества. Рассматривались два типа полых микросфер с толщинами стенок: 5 и 2 мкм. Методы. Решение поставленной задачи получено методом конечных элементов. Использовалась аппроксимация Галеркина, неравномерная конечно-элементная сетка. Параметры элементов сетки выбирались из условий сходимости решения. Увеличение числа элементов расчетной сетки проводилось с использованием метода Делоне. Результаты. Установлены величины тепловых потоков в слое тонкопленочной тепловой изоляции при наличии радиационного теплообмена. На основании сопоставления результатов численного моделирования теплопереноса в слое тонкопленочной тепловой изоляции, выполненного с использованием кондуктивно-конвективной модели теплопереноса, с результатами для кондуктивно-конвективно-радиационной модели установлено, что расхождение между ними не превышает 0,1 % и объясняется погрешностями численных расчетов. По этой причине в практических расчетах можно использовать более простую кондуктивную модель теплопереноса.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.