SUMMARYThe process of germ line determination involves many conserved genes, yet is highly variable. Echinoderms are positioned at the base of Deuterostomia and are crucial to understanding these evolutionary transitions, yet the mechanism of germ line specification is not known in any member of the phyla. Here we demonstrate that small micromeres (SMics), which are formed at the fifth cell division of the sea urchin embryo, illustrate many typical features of primordial germ cell (PGC) specification. SMics autonomously express germ line genes in isolated culture, including selective Vasa protein accumulation and transcriptional activation of nanos; their descendants are passively displaced towards the animal pole by secondary mesenchyme cells and the elongating archenteron during gastrulation; Cadherin (G form) has an important role in their development and clustering phenotype; and a left/right integration into the future adult anlagen appears to be controlled by a late developmental mechanism. These results suggest that sea urchin SMics share many more characteristics typical of PGCs than previously thought, and imply a more widely conserved system of germ line development among metazoans.
KEY WORDS: Vasa, PGC, Germ line, Cadherin, Sea urchin, Strongylocentrotus purpuratusAutonomy in specification of primordial germ cells and their passive translocation in the sea urchin Mamiko Yajima* and Gary M. Wessel* DEVELOPMENT 3787 RESEARCH ARTICLE PGC specification in sea urchin specification and clustering, and we conclude that several overarching mechanisms appear conserved between the SMic lineage and the more widely studied PGCs, such as Drosophila pole cells.
MATERIALS AND METHODS
Animals, embryos and larval cultureS. purpuratus were collected in Long Beach, CA, USA, and housed in aquaria containing artificial seawater (ASW; Coral Life Scientific Grade Marine Salt; Energy Savers Unlimited, Carson, CA, USA) at 16°C. Gametes were acquired by 0.5 M KCl injection. Eggs were collected in ASW and sperm were collected dry. To obtain embryos, fertilized eggs were cultured in ASW or Millipore-filtered seawater (MFSW) at 16°C. When early stage embryos were required for blastomere labeling, fertilization was performed in the presence of 1 mM 3-aminotriazol (Sigma, St Louis, MO, USA) to inhibit cross-linking of the fertilization envelope. Before labeling, envelopes were removed by gentle pipetting.
Chemical treatment and immunolabeling