Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The Pt(IV) complex c,c,t-[Pt(NH3)2Cl2(OH)2] is an important intermediate in the synthesis of Pt(IV) anticancer prodrugs and has been investigated as an anticancer agent in its own right. An analysis of the vibrational spectroscopy of this molecule was previously reported [Faggiani et al., 1982, Can. J. Chem. 60, 529] in which crystallographic determination of the structure of the complex permitted a site group approach. The space group, however, was incorrectly assigned. In the present study we have redetermined at high resolution crystal structures of c,c,t-[Pt(NH3)2Cl2(OH)2] and c,c,t-[Pt(NH3)2Cl2(OH)2]·H2O2, which enable discussion of the effect of hydrogen bonding on the N–H and O–H vibrational bands. The correct crystallographic site symmetry of the platinum complex in the c,c,t-[Pt(NH3)2Cl2(OH)2] structure is employed to conduct a new vibrational analysis using both group theoretical and modern DFT methods. This analysis reveals the nature and symmetry of the “missing band” described in the original publication and suggests a possible explanation for its disappearance.
The Pt(IV) complex c,c,t-[Pt(NH3)2Cl2(OH)2] is an important intermediate in the synthesis of Pt(IV) anticancer prodrugs and has been investigated as an anticancer agent in its own right. An analysis of the vibrational spectroscopy of this molecule was previously reported [Faggiani et al., 1982, Can. J. Chem. 60, 529] in which crystallographic determination of the structure of the complex permitted a site group approach. The space group, however, was incorrectly assigned. In the present study we have redetermined at high resolution crystal structures of c,c,t-[Pt(NH3)2Cl2(OH)2] and c,c,t-[Pt(NH3)2Cl2(OH)2]·H2O2, which enable discussion of the effect of hydrogen bonding on the N–H and O–H vibrational bands. The correct crystallographic site symmetry of the platinum complex in the c,c,t-[Pt(NH3)2Cl2(OH)2] structure is employed to conduct a new vibrational analysis using both group theoretical and modern DFT methods. This analysis reveals the nature and symmetry of the “missing band” described in the original publication and suggests a possible explanation for its disappearance.
Platinum (Pt)(IV) complexes are thought to function as prodrugs for anticancer Pt(II) drugs. We studied two pairs of Pt(II)/Pt(IV) complexes to explore whether there were differences in their cytotoxic activities, their abilities to cause acquired resistance and their gene expression profiles in the resistant lines. Microtiter methods were used to evaluate the antiproliferative activity of cisplatin, oxoplatin, [trans-d,l-(1,2-diaminocyclo-hexane)]dichloroplatinum(II) [DACH-Pt(II)] and cis,trans-[trans-d,l-(1,2-diaminocyclo-hexane)]-dichlorodihydroxoplatinum(IV) [DACH-Pt(IV)] in a panel of 14 human cancer cell lines. Cisplatin and oxoplatin showed significant similar spectra of cytotoxicity, whereas DACH-Pt(II) and DACH-Pt(IV) did not. DACH-Pt(IV) required more than 24 h to reach full potency, whereas the other three Pt complexes achieved maximal activity in less than 24 h. The SISO cervical cell line was made four- to six-fold resistant to the four Pt complexes by weekly exposure to the respective agent. Glutathione (GSH) levels increased in all resistant lines except for the DACH-Pt(IV) resistant line. The catalytic concentrations of various redox enzymes (GSH transferase, GSH peroxidase, GSH reductase, catalase) were all unchanged in the resistant lines relative to the native line. Multidrug resistance protein 2 expression was detected in the cisplatin-resistant and oxoplatin-resistant cell lines but not in the native line. The transcription of 29,000 genes in the SISO lines resistant to either cisplatin or oxoplatin was studied by DNA-microarray methods and compared with the native line. Overall changes in gene transcription were very different between the cisplatin-resistant and oxoplatin-resistant cell lines. Thus, Pt(IV) complexes seem to have biological actions that distinguish them from their Pt(II) counterparts, even when they show cross-resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.