The traditional tenon and mortise joint has low processing efficiency and a weak theoretical basis, making the structure easy to deform and damage, reducing the safety, and increasing waste of resources. This study aims to determine the optimum dowel center spacing parameter for chamfered-joint components and the maximum value of the strength of joints loaded into bending strength and tensile strength. In this study, an integrated optimization method combining the single-factor test and one-way ANOVA analysis was proposed to study the influence of the dowel center spacing on the bending strength and the tensile strength of chamfered-joint components made by Cupressus funebris wood. The results revealed that the bending strength of chamfered-joint components decreases linearly with the increase of the dowel center spacing. In addition, the tensile strength of chamferedjoint components increases first and then decreases with the increase of the dowel center spacing, showing parabola change. The relational expression between dowel center spacing, the bending strength, dowel center spacing and the tensile strength were obtained.