Partial discharge (PD) based condition monitoring has been widely applied to power cables. However, difficulties in interpretation of measurement results (location and criticality) remain to be tackled. This paper aims to develop further knowledge in PD signal propagation in power cables and attenuation by the PD monitoring system devices to address the localization and criticality issues. As on-line or in-service PD monitoring sensors commonly comprise of a high frequency current transformer (HFCT) and a high-pass filter, the characteristics of detected PD pulses depend on the attenuation of the cable, the HFCT used and the filter applied. Simulation of pulse propagation in a cable and PD monitoring system are performed, based on analyses in the frequency domain using the concept of transfer functions. Results have been verified by laboratory experiments and using on-site PD measurements. The knowledge gained from the research on the change in pulse characteristics propagating in a cable and through a PD detection system can be very useful to PD denoising and for development of a PD localization technique