Relativistic calculations of the electronic structure of the superheavy element of the eighth period - eka-francium (Z=119) and its homologues, which form the group of alkali metals, are performed in the framework of the configuration-interaction method and many-body perturbation theory using the basis of the Dirac-Fock-Sturm orbitals (DFS). The obtained values of the ionization potentials, electron affinities, and root-mean-square radii are compared with the corresponding values calculated within the non-relativistic approximation. A comparison with the available experimental data and the results of previous theoretical calculations is given as well. The analysis of the obtained results indicates a significant influence of the relativistic effects for the francium and eka-francium atoms, which leads to a violation of the monotonic behaviour of the listed above chemical properties as a function of the alkaline-element atomic number. In addition, the quantum electrodynamics corrections to the ionization potentials are evaluated by employing the model Lamb-shift operator (QEDMOD).