Collagen is crucial for tissue structure, functional maintenance, and cellular processes such as proliferation and differentiation. However, the specific changes in collagen expression and its associated genes in the lung tissues of yaks at high altitudes and their relationship with environmental adaptation remain poorly understood. Studying differences in the content of collagen fibers and gene expression between yaks at high (4,500 m) and low (2,600 m) altitudes, as well as between cattle at low altitudes (2,600 m). Using Masson staining, we found that the collagen fiber content in the lung tissues of yaks at low altitude was significantly higher compared to yaks at high altitude and cattle at the same altitude (P < 0.05). It was revealed through transcriptomic analyses that genes differentially expressed between high and low altitude yaks, as well as between low altitude yaks and cattle, were notably enriched in pathways related to cell adhesion, collagen synthesis, focal adhesion, and ECM-receptor interactions. Specifically, genes involved in mesenchymal collagen synthesis (e.g., COL1A1, COL1A2, COL3A1), basement membrane collagen synthesis (e.g., COL4A1, COL4A2, COL4A4, COL4A6), and peripheral collagen synthesis (e.g., COL5A1, COL6A1, COL6A2, COL6A3) were significantly upregulated in the lung tissues of yaks at low altitude compared to their high altitude counterparts and cattle (P < 0.05). In conclusion, yaks at lower altitudes exhibit increased collagen synthesis by upregulating collagen gene expression, which contributes to maintaining alveolar stability and septal flexibility. Conversely, the expression of collagen genes in yak lung tissues was down-regulated with the increase in altitude, and it was speculated that the decrease in collagen may be used to constrain the function of elastic fibers that are more abundant at high altitude, so as to enable them to adapt to the harsh environment with hypoxia and high altitude. This adaptation mechanism highlights the role of collagen in environmental acclimatization and contributes to our understanding of how altitude and species influence collagen-related physiological processes in yaks.