This paper is concerned with the determination of the thermoelastic stress, strain and conductive temperature in a piezoelastic half-space body in which the boundary is stress free and subjected to thermal loading in the context of the fractional order two-temperature generalized thermoelasticity theory (2TT). The two-temperature three-phase-lag (2T3P) model, two-temperature Green-Naghdi model III (2TGNIII) and two-temperature Lord-Shulman (2TLS) model of thermoelasticity are combined into a unified formulation introducing unified parameters. The basic equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain that is then solved by the state-space approach. The numerical inversion of the transform is carried out by a method based on Fourier series expansion techniques. The numerical estimates of the quantities of physical interest are obtained and depicted graphically. The effect of the fractional order parameter, two-temperature and electric field on the solutions has been studied and comparisons among different thermoelastic models are made.