Optical sensors for displacement measurement and fluorescence probes were designed and experimentally studied. This is the first time we used photonic sensors for displacement measurement and fluorescence probes at the same time using a long-wavelength (1310 nm) photon beam in the reflective mode. A tapered fiber sensor was chosen to increase the dynamic range for fluorescence probes. The results showed that the tapered fiber sensor exhibited a high resolution of 12 nm and a better dynamic range of 2 mm in our system. The relationship between resolution and dynamic range was experimentally found to vary with tapered fiber tilt angle. The precise diameter of the fiber microlens was measured. These were the characteristics considered in the manufacturing of our chosen device. Moreover, these novel 1310-nm-wavelength tapered fiber sensors with high resolution, good dynamic range, better reliability, and low cost may provide multipurpose applications, such as those in telecommunication systems, commercial measurements, and military inspection.