Abstract. The objective of this research is to achieve high-speed electrical discharge machining (EDM) of small holes using a high-speed, high-precision, 3-DOF controlled, magnetic/piezoelectric hybrid drive actuator. In this paper, the proposed actuator was attached to the conventional electrical discharge machine, and the increase in the machining speed using the actuator was experimentally confirmed. The relationships between the machining speed, the amplitude and the frequency of the electrode vibration were discussed. Experimental results show that the use of the proposed actuator can speedily adjust the distance between the electrode and the workpiece, and the machining speed was increased by 138% compared with the conventional EDM. Moreover, the machining speed using the actuator also was increased as the changes of the amplitude and the frequency of the electrode vibration, and it was increased by 76% compared to without the electrode vibration.