Brucellosis remains an endemic zoonotic disease in many developing countries, causing great harm to public health and devastating losses to livestock. One of the main reasons for the low effectiveness of anti-brucellosis measures is the lack of reliable methods for diagnosing infected animals throughout their lifespan. Classical serological tests, such as the tube agglutination test, rose Bengal plate test, and complement fixation test, as well as commercial enzyme-linked immunosorbent assay kits, are based on the detection of antibodies to the cell wall polysaccharide antigens of Brucella spp. smooth strains. As a result, they do not exclude cross-reactions with related bacteria and fail to differentiate between infected and vaccinated animals. Over the past decades, many attempts have been made to identify immunoreactive and pathogen-specific protein antigens. To date, several studies have investigated Brucella spp. recombinant proteins, including cell wall proteins, as the best antigens for diagnosing brucellosis in animals and humans. However, the available results on the specificity and sensitivity of serological tests based on cell wall proteins are ambiguous and sometimes contradictory. This review aims to provide an overview of the current state of knowledge of the diagnostic value of outer membrane and/or periplasmic proteins of Brucella spp. The goal is to identify future developments that may lead to reliable antigens for serological tests.
Keywords: Brucella, diagnostics, enzyme-linked immunosorbent assay, outer membrane protein, periplasmic protein.