This paper describes an evaluation of the structural properties of the next-generation active twist blade using X-ray computed tomography (CT) combined with digital image processing. This non-destructive testing technique avoids the costly demolition of the blade structure. The CT scan covers the whole blade region, including the root, transition, and tip regions, as well as the airfoil blade regions, in which there are spanwise variations in the interior structural layout due to the existence of heavy instrumentation. The three-dimensional digital image data are processed at selected radial stations, and finite element beam cross-section analyses are conducted to evaluate the structural properties of the blade at the macroscopic level. The fidelity of the digital blade model is first assessed by correlating the estimated blade mass with the measured data. A separate mechanical measurement is then carried out to determine the representative elastic properties of the blade and to verify the predicted results. The agreement is found to be good to excellent for the mass, elastic axis, flap bending, and torsional rigidity. The discrepancies are less than 2.0% for the mass and elastic axis locations, and about 8.1% for the blade stiffness properties, as compared with the measured data. Finally, a sensitivity analysis is conducted to clarify the impact of modeling the sensor and actuator cables, nose weight, and manufacturing imperfections on the structural properties of the blade.