Vibration-assisted machining (VAM) is an external energy assisted machining method to improve the material removal process by superimposing high frequency and small amplitude vibration onto tool or workpiece motion. VAM has been applied to several machining processes, including turning, drilling, grinding, and more recently milling, for the processing of hard-to-machine materials. This paper gives a critical review of vibration-assisted milling (VAMilling) research. The basic kinematic equations of 1D and 2D VAMilling are formulated and three typical tool-workpiece separation types are proposed. State-of-the-art on the principle and structural design of VAM systems are reviewed. The benefits and applications of VAMilling are discussed with emphasis on machining of hard-to-machine materials. Finally, the paper concludes with future possibilities for VAMilling.