“…In our recent study [2], we indicated that ultrasonic testing is one of the most widely used methods to evaluate defects and structural damage in fiber-reinforced composite materials, and it performs well in detecting both surface and deeply buried damage and defects. However, this method does have several limitations as it requires a coupling medium (except for airborne ultrasonic), lacks the sensitivity to shallow surface fracture defects, and is subjected to large attenuations of the sound waves when propagating in multilayered composite materials such as GFRP composites [5,7]. Additional NDT&E techniques have also been used for the testing of GFRP composite materials, including X-ray radiography, infrared thermography (IRT), optical coherence tomography (OCT), optical interferometric techniques (e.g., moiré interferometry, holographic interferometry, speckle interferometry, electronic speckle pattern interferometry (ESPI), digital speckle correlation, and shearography and their subsequent variations), acoustic emission (AE), vibration testing, strain monitoring, and microwave, etc.…”