Studying the movement characteristics of the coalmine emulsion pump valve is of great significance for optimizing the dynamic response characteristics of the pump valve, reducing the hysteresis effect, and improving the volumetric efficiency. This article combines the Internet of Things (IoT) and cellular automata techniques to investigate the movement characteristics of the valve of the emulsion pump. Based on Adolf’s exact differential equation and Runge–Kutta iterative method, the movement displacement and movement of the pump valve spool speed curve are computed using Scilab software. We employ cellular automata and AMESim to establish the hydraulic system model of emulsion pump and analyze the movement characteristics of pump valve movement displacement, speed, stability, and closing hysteresis through simulation. Finally, the IoT techniques and a test device are used to evaluate the movement displacement of the pump valve. The experimental results verify the feasibility of using the proposed method to study the pump valve motion characteristics, greatly reduce the cost of testing and parameterized design, and contribute to the development of highly reliable and efficient emulsion pump valves.