A phase-sensitive 2D motion estimator is useful for measurement of minute tissue motion. However, the effect of conditions for emission of ultrasonic waves on the accuracy of such an estimator has not been investigated thoroughly. In the present study, the accuracy of the phase-sensitive 2D motion estimator was evaluated under a variety of transmission conditions. Although plane wave imaging with a single emission per frame achieved an extremely high temporal resolution of 10417 Hz, the accuracy in estimation of lateral velocities was worse than compound-based method or focused-beam method. By contrast, the accuracy in estimation of axial velocities hardly depended on the transmission conditions. Also, the phase-sensitive 2D motion estimator was combined with the block matching method to estimate displacements larger than the ultrasonic wavelength. Furthermore, the results show that the correlation coefficient in block matching has potential to be used for evaluation of the reliability of the estimated velocity.