This article proposes a model of predicting the fretting wear lifetime of a low-friction coating. The proposed model incorporates multiple factors that influence the fretting wear damage of coatings: the imposed contact load, imposed average velocity, coating hardness, and initial surface roughness of counterparts. The fretting wear lifetime of coatings, defined as the number of cycles critical to friction coefficient evolution, was collected from the literature. For the purpose of identifying parameters in the model, experimental fretting wear lifetime data were analyzed. The results show that the fretting wear lifetime of a coating can be described by an inverse power law regarding the contact load, imposed average velocity, and initial surface roughness of counterparts. In contrast, the fretting wear lifetime of a coating was observed to increase with increased coating hardness. It was observed that the exponents of the inverse power law varied with respect to the type of coating. The proposed fretting wear lifetime model enables the prediction of coating lifetime under various fretting conditions.