Our innovative similarity transformation for in-depth research of convection heat and mass transfer is presented.For solving convection heat and mass transfer issues, the boundary layer analysis method is used, and meanwhile, the FalknerSkan transformation is currently popular to treat the core similarity variables for velocity field similarity. But this type of transformation is inconvenient to do this core work, for similarity transformation of velocity field, because it is necessary to first induce flow function and group theory to d e r i v e a n intermediate function for an indirect similarity transformation of the velocity field. This case also allows a difficult situation on consideration of variable physical properties. With our innovative similarity transformation, the above inconvenient and difficult situations are avoided, and the velocity components can be directly transformed to the related dimensionless ones. Then, the similarity analysis and transformation of the governing partial differential equations can be simplified greatly. Furthermore, our innovative similarity transformation can conveniently treat variable physical properties and their coupled effect on heat and mass transfer for enhancement of the practical value of convection heat and mass transfer, and so is a better alternative transformation method to the traditional Falkner-Skan transformation. It was proved that the above two innovative methods have a wide practical application in industry.