2018
DOI: 10.1051/matecconf/201820101010
|View full text |Cite
|
Sign up to set email alerts
|

Study on Machine Learning Based Intelligent Defect Detection System

Abstract: In the paper, it is proposed to develop a machine learning based intelligent defect detection system for metal products. The common machine vision system has the surface (stain, shallow pit, shallow tumor, scratches, Edge defects, pattern defects) detection, or for the processing of the size, diameter, diameter, eccentricity, height, thickness and other parts of the non-contact numerical parameters of detection. Considering the quality of the work piece and the defects of the standard, so for the quality of cu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
9
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 24 publications
(13 citation statements)
references
References 10 publications
0
9
0
2
Order By: Relevance
“…Equation ( 1) is the loss function of the segmentation and classification network. Our proposed network learns to minimize the total cost of Equation (2). Weights α and β in Equation ( 2) are user-defined values for segmentation and classification performance control.…”
Section: Multi-channel Parameter Reduction and Reliable Detection Networkmentioning
confidence: 99%
See 1 more Smart Citation
“…Equation ( 1) is the loss function of the segmentation and classification network. Our proposed network learns to minimize the total cost of Equation (2). Weights α and β in Equation ( 2) are user-defined values for segmentation and classification performance control.…”
Section: Multi-channel Parameter Reduction and Reliable Detection Networkmentioning
confidence: 99%
“…They also posed a challenge in setting numerical criteria for distinguishing real defects from fake or allowable defects. To overcome the limitations of conventional inspection algorithms, deep learning (DL) methods [1,2] have recently been widely explored. For a DL-based inspection algorithm to be a successful alternative to conventional algorithms, two key requirements must be satisfied.…”
Section: Introductionmentioning
confidence: 99%
“…As redes neurais que se enquadram no conceito de DL são chamadas de deep neural networks (DNNs) [9]. O reconhecimento de imagens com essas redes tem a vantagem de não distinguir a segmentação, extração de características, e classificação, aprendendo das imagens as características, diferente da abordagem clássica de reconhecimento de padrões, onde há uma engenharia de características projetada por humanos [17] [48] [10]. Além disso, é possível que o DL produza um melhor desempenho de classificação, pois muitas vezes as técnicas clássicas de limiar são insuficientes para segmentar defeitos de fundo se não houver um ambiente controlado e com iluminação estável [49].…”
Section: E Reconhecimento De Padrões De Imagem Com Técnicas De Deep Learningunclassified
“…Alguns exemplos desse tipo de aplicação são: um método proposto para detecção automática da presença de componentes em placas de circuito impresso e bombas de injeção utilizando a rede neural Multi-Layer Perceptron (MLP) [14]; método para detecção de componentes (o'ring) utilizando o classificador Gaussian Mixture Models (GMM) [3]; detecção de grampos de fixação em uma peça estampada utilizando um classificador neuro-fuzzy e um classificador baseado em limites [15]; e detecção de componentes de transformadores elétricos utilizando um modelo baseado em Faster Regionbased Convolutional Neural Network [16]. O uso dessas tecnologias está em rápida expansão, muitas vezes criando novas formulações de problemas impulsionados por aplicações práticas [8], e devem fazer a Indústria 4.0 mais sofisticada [17].…”
Section: Introductionunclassified
“…Audio signals from different materials are transformed to data sets that represents the material explicitly using feature engineering. [4][5][6][7] There are many feature extraction techniques for audio signal [19] and these feature extraction methods use both spectral, and joint time-frequency signal representation. Artificial Neural Network is the classifier used to classify the feature database.…”
Section: Introductionmentioning
confidence: 99%