The timely injection of gangue slurry into the mining space formed after coal mining can scale up the disposal of gangue and control surface deformation. However, the waterproof effect of gangue slurry in the mining space remains unclear, necessitating urgent investigation into the permeability characteristics of compacted backfill bodies of gangue slurry under the action of overburden. In this study, a multi-field coupled seepage test system for backfill materials was developed based on Forchheimer’s nonlinear seepage law, and a laboratory preparation method for compacted backfill body (CBB) of gangue slurry after grouting and backfilling in mining space under pseudo-triaxial conditions was proposed. Additionally, the pressure bleeding characteristics of gangue slurry under the action of overburden were studied, the variation law of permeability of the CBB with the axial pressure, a particle size range, and cement dosage was revealed, and the determination method for the permeability level of the CBB and its optimization method were put forward. The research results indicate that there are obvious staged characteristics in the pressure bleeding changes in gangue slurry. Axial pressure, particle size range, and cement dosage all have a significant impact on the permeability of the CBB. The permeability level of the CBB of gangue slurry is within the range of poor permeability and extremely poor permeability. After backfilling into the mining space, gangue slurry exhibits a significant water-blocking effect.