Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Water huff-n-puff is one of the effective energy supplement methods for the development of tight oil reservoirs by horizontal wells. However, the oil production performance of water huff-n-puff severely decreases after several cycles. Available researches indicate that the inter-fracture asynchronous injection-production technology for the horizontal well is an efficient method for improving the oil production performance of water huff-n-puff. However, considering the object of the inter-fracture asynchronous huffn- puff is the single horizontal well, the study for a horizontal well group is less. Therefore, the asymmetric inter-fracture asynchronous huff-n-puff technology for the horizontal well group was investigated in this paper. The oil productions of the horizontal well group for different huff-n-puff modes were compared and analyzed first. After that, the oil recovery mechanisms of the asymmetric inter-fracture asynchronous huff-n-puff technology for the horizontal well group were revealed. Finally, the influence of operating parameters on the oil production of the horizontal well group for the asymmetric inter-fracture asynchronous huff-n-puff technology for the horizontal well group was studied by the numerical simulation method. The results show that compared with the water huff-n-puff, the accumulative oil productions for the asymmetric inter-fracture asynchronous huff-n-puff technology for the horizontal well group increased by 5134.8m3, and the increased amplitude is 36.86%. The imbibition, the inter-fracture displacement, and the inter-well displacement are the main oil recovery mechanisms of the asymmetric inter-fracture asynchronous huff-n-puff technology for the horizontal well group. The accumulative oil production of the horizontal well group for the asymmetric inter-fracture asynchronous huff-n-puff increases first, and then declines, finally tend to be stable with the increase of injection rate. Both the injection volume and the soaking time show a positive correlation with the accumulative oil production. The accumulative oil production of the horizontal well group decreases with the increase of production rate due to the aggravation of water channeling in the production stage. This work could provide certain theoretical guidance for the effective development of similar reservoirs by the horizontal well group.
Water huff-n-puff is one of the effective energy supplement methods for the development of tight oil reservoirs by horizontal wells. However, the oil production performance of water huff-n-puff severely decreases after several cycles. Available researches indicate that the inter-fracture asynchronous injection-production technology for the horizontal well is an efficient method for improving the oil production performance of water huff-n-puff. However, considering the object of the inter-fracture asynchronous huffn- puff is the single horizontal well, the study for a horizontal well group is less. Therefore, the asymmetric inter-fracture asynchronous huff-n-puff technology for the horizontal well group was investigated in this paper. The oil productions of the horizontal well group for different huff-n-puff modes were compared and analyzed first. After that, the oil recovery mechanisms of the asymmetric inter-fracture asynchronous huff-n-puff technology for the horizontal well group were revealed. Finally, the influence of operating parameters on the oil production of the horizontal well group for the asymmetric inter-fracture asynchronous huff-n-puff technology for the horizontal well group was studied by the numerical simulation method. The results show that compared with the water huff-n-puff, the accumulative oil productions for the asymmetric inter-fracture asynchronous huff-n-puff technology for the horizontal well group increased by 5134.8m3, and the increased amplitude is 36.86%. The imbibition, the inter-fracture displacement, and the inter-well displacement are the main oil recovery mechanisms of the asymmetric inter-fracture asynchronous huff-n-puff technology for the horizontal well group. The accumulative oil production of the horizontal well group for the asymmetric inter-fracture asynchronous huff-n-puff increases first, and then declines, finally tend to be stable with the increase of injection rate. Both the injection volume and the soaking time show a positive correlation with the accumulative oil production. The accumulative oil production of the horizontal well group decreases with the increase of production rate due to the aggravation of water channeling in the production stage. This work could provide certain theoretical guidance for the effective development of similar reservoirs by the horizontal well group.
The recovery factor of horizontal wells in tight reservoirs after stage fracturing is low. The effect of water huff-puff on enhancing oil recovery is not obvious. Water channeling is serious during interwell water displacement. Conventional EOR (enhance oil recovery) methods are not effective. Scholars have proposed the method of interfracture water flooding after horizontal well fracturing to improve recovery efficiency in tight reservoirs. In order to study the EOR effects of interfracture water flooding and huff-puff in tight reservoirs, three different EOR schemes were designed: interfracture synchronous water flooding (IFSWF), interfracture asynchronous water flooding (IFAWF), and water huff-puff. The experiment results show the following: (1) in the physical simulation experiment of homogeneous cores, after injection of 0.8 PV formation water, the recovery rates of huff-puff, IFAWF, and IFSWF were 25.7%, 33.7%, and 38.6%, respectively. (2) In the simulation of fractured cores, the oil concentration of IFAWF is 2.7 times higher than that of IFSWF. (3) In the simulation of formation energy replenishment by fractured core, the formation pressure increased by IFAWF is 1.9 times higher than the pressure increased by IFSWF. The results of this study show that interfracture asynchronous flooding can increase the utilization efficiency of injected water, overcome heterogeneity, effectively supplement the energy of tight reservoir, increase the swept area, and improve the recovery factor. IFAWF is a more suitable EOR method for tight reservoirs. The findings of this study contribute to a better understanding of how to select methods to enhance tight oil recovery. At the same time, it provides a method and idea for improving oil recovery of shale oil with lower reservoir physical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.