Transforming waste biomass materials into bio-oils in order to partially substitute petroleum asphalt can reduce environmental pollution and fossil energy consumption and has economic benefits. The characteristics of bio-oils and their utilization as additives of asphalts are the focus of this review. First, physicochemical properties of various bio-oils are characterized. Then, conventional, rheological, and chemical properties of bio-oil modified asphalt binders are synthetically reviewed, as well as road performance of bio-oil modified asphalt mixtures. Finally, performance optimization is discussed for bio-asphalt binders and mixtures. This review indicates that bio-oils are highly complex materials that contain various compounds. Moreover, bio-oils are source-depending materials for which its properties vary with different sources. Most bio-oils have a favorable stimulus upon the low temperature performance of asphalt binders and mixtures but exhibit a negative impact on their high-temperature performance. Moreover, a large amount of oxygen element, oxygen-comprising functional groups, and light components in plant-based bio-oils result in higher sensitivity to ageing of bio-oil modified asphalts. In order to increase the performance of bio-asphalts, most research has been limited to adding additive agents to bio-asphalts; therefore, more reasonable optimization methods need to be proposed. Furthermore, upcoming exploration is also needed to identify reasonable evaluation indicators of bio-oils, modification mechanisms of bio-asphalts, and long-term performance tracking in field applications of bio-asphalts during pavement service life.