According to the difficult machinability of titanium alloy, the research shows that the surface micro-textured technology can reduce the friction force and cutting temperature in the cutter-workpiece contact area. Starting with the precise preparation of micro textures by laser processing technology, this paper takes ball-end milling cutter milling titanium alloy as the research object, studies the influence of laser processing parameters on micro-textured size parameters, and optimizes the laser processing parameters as follows: laser power P = 40 W, scanning speed V = 1700 mm/s, scanning times N = 7 times, and spot diameter D = 40 μm. The distribution of temperature field and stress field during laser processing is analyzed, and the accuracy of the influence rule of laser processing parameters on micro-textured size parameters is verified, thus realizing the purpose of accurately preparing micro textures. The interactive influence of mesoscopic geometric features on the cutting performance of ball-end milling cutter is analyzed, and the genetic algorithm is used to optimize the parameters. The results show that the main factor affecting the force-heat characteristics of the tool is the blunt edge radius, and the interaction between the blunt radius of the cutting edge and the distance from blade is obvious. The optimized mesoscopic geometric parameters are as follows: the blunt edge radius is 20 μm, and the distance from blade is 110 μm, the micro-textured diameter is 30 μm, and the micro-textured spacing is 175 μm. The research content of this paper lays a foundation for efficient cutting of titanium alloy materials.