This paper investigates the formation control problem of multi-unmanned aerial vehicle (UAV) systems with multi-operating modes. While mode switching enhances the flexibility of multi-UAV systems, it also introduces dynamic model switching behaviors in UAVs. Moreover, obtaining an accurate dynamic model for a multi-UAV system is challenging in practice. In addition, communication link failures and time-varying unknown disturbances are inevitable in multi-UAV systems. Hence, to overcome the adverse effects of the above challenges, a hybrid iterative learning formation control strategy is proposed in this paper. The proposed controller does not rely on precise modeling and exhibits its learning ability by utilizing historical input–output data to update the current control input. Furthermore, two convergence theorems are proven to guarantee the convergence of state, disturbance estimation, and formation tracking errors. Finally, three simulation examples are conducted for a multi-UAV system consisting of four quadrotor UAVs under multi-operating modes, switching topologies, and external disturbances. The results of the simulations show the strategy’s effectiveness and superiority in achieving the desired formation control objectives.