Abstract:The solidification path of peritectic steel Q345 was calculated and compared with in-situ observations to investigate the effect of phase transition on the equilibrium partition coefficient. Subsequently, a thermodynamic model for calculating the equilibrium partition coefficient was established and thermodynamic calculations were performed under different phase configurations. Results indicate that L (liquid phase) + δ, L + δ + γ, and L + δ phases coexist in sequence during the solidification of peritectic steel Q345. The phase constitution of the mushy zone evidently affects the evolution of the equilibrium partition coefficient of solutes. The temperature dependence of the equilibrium partition coefficient was quantified through the regression analyses of C, Si, Mn, P, and S solutes under different phase configurations. The average equilibrium partition coefficients of Mn, Si, P, C, and S are 0.696, 0.615, 0.273, 0.2, and 0.033, respectively, thereby indicating the strongest segregation tendency for S and the weakest for Mn.