A moonpool is meant for access to the underwater part of the ship from onboard. It is a vertical opening along the depth having an effect on the performance of the floating platform. Inside the moonpool, water motions in horizontal plane is called sloshing and in vertical planes it is called piston mode. Moonpool causes deck wetness and sometimes results in the downtime of the platform. It is the necessity of the operator to be at the safe conditions of platform facing varied environmental conditions. In the present study, vessel response in the region of moonpool resonance was investigated with different shapes of moonpool and comparison is made with Molin's (2001, “On the Piston and Sloshing Modes in Moonpools,” J. Fluid Mech., 430, pp. 27–50.) theoretical and Fukuda's (1977, “Behavior of Water in Vertical Well With Bottom Opening of Ship and Its Effects on Ship-Motion,” J. Soc. Nav. Archit. Jpn., 1977(141), pp. 107–122.) empirical formulas. It is seen that there is a shift in the frequency of resonance based on moonpool shapes. The effect of moonpool on the ship motion with forward speed is also attempted in this paper. Proven packages are used to calculate the calm water resistance of the ship with moonpool of various cross section. Wave making coefficient of the ship is modified due to opening to accommodate the moonpool. The openings to accommodate moonpool causes further entry of water both zero and nonzero Froude number especially in the presence of waves.