IFIP International Federation for Information Processing
DOI: 10.1007/978-0-387-75494-9_22
|View full text |Cite
|
Sign up to set email alerts
|

Study on Personalized Recommendation Model of Internet Advertisement

Abstract: Abstract. With the rapid development of E-Commerce, the audiences put forward higher requirements on personalized Internet advertisement than before. The main function of Personalized Advertising System is to provide the most suitable advertisements for anonymous users on Web sites. The paper offers a personalized Internet advertisement recommendation model. By mining the audiences' historical and current behavior, and the advertisers' and publisher's web site content, etc, the system can recommend appropriate… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0
1

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 7 publications
0
3
0
1
Order By: Relevance
“…Izvor: Maggi 2011Sistemi za personalizovano reklamiranje najčešće se baziraju na data mining-u (Zhou et al, 2007). Za funkcionisanje ovakvog sistema neophodno je najpre prikupiti informacije o konkretnom korisniku (veb istorija, informacije prilikom registracije, aktuelno ponašanje na Internetu), ali i analizirati reklamne poruke.…”
Section: Slika 1 Uloga Menadžmenta Zajedniceunclassified
“…Izvor: Maggi 2011Sistemi za personalizovano reklamiranje najčešće se baziraju na data mining-u (Zhou et al, 2007). Za funkcionisanje ovakvog sistema neophodno je najpre prikupiti informacije o konkretnom korisniku (veb istorija, informacije prilikom registracije, aktuelno ponašanje na Internetu), ali i analizirati reklamne poruke.…”
Section: Slika 1 Uloga Menadžmenta Zajedniceunclassified
“…However, the details of the algorithms are not provided in their paper and the paper mostly presents the framework. Zhou et al also provides the architecture of such a framework without any specific details 6 . The authors leave the scheduling part as future research topic in their paper.…”
Section: Relevant Literaturementioning
confidence: 99%
“…After Score j is determined for the user a probabilistic assignment methodology will be utilized. The probability of displaying the advertisement j to the user i from the ad location k whenever the user is at the proximity of the location is referred to as r ijk and calculated as follows; r ijk = Score j / Σ j Score j (7) To sum up, whenever user i is in the range of location k, the probabilities, r ijk , will be calculated for all advertisements as in equation 7and select the advertisement accordingly.…”
Section: Proposed Frameworkmentioning
confidence: 99%