Electro-chlorination (E-Cl) is an emerging and promising electrochemical advanced oxidation technology for wastewater treatment with the advantages of high efficiency, deep mineralization, a green process, and easy operation. It was found that the mechanism of pollutant removal by electro-chlorination mainly involves an indirect oxidation process, in which pollutant removal is mainly driven by the intermediate active species, especially RCS and chlorine radicals, with a strong oxidization ability produced at the anodes. In this work, we summarized the principles and pathways of the removal/degradation of pollutants (organic pollutants and ammonia nitrogen) by E-Cl and the major affecting factors including the applied current density, voltage, electrolyte concentration, initial pH value, etc. In the E-Cl system, the DSA and BDD electrodes were the most widely used electrode materials. The flow-through electrode reactor was considered to be the most promising reactor since it had a high porosity and large pore size, which could effectively improve the mass transfer efficiency and electron transfer efficiency of the reaction. Of the many detection methods for chlorine radicals and RCS, electron paramagnetic resonance (EPR) and spectrophotometry with N, N-diethyl-1,4-phenylenediamine sulfate (DPD) as the chromogenic agent were the two most widely used methods. Overall, the E-Cl process had excellent performance and prospects in treating salt-containing wastewater.