Study on settlement prediction of soft ground considering multiple feature parameters based on ISSA-RF model
Changshuai Sun,
Tianwen Yu,
Min Li
et al.
Abstract:By collecting a large amount of data from various preloading engineering projects, a settlement prediction database was established including up to 15 feature parameters, such as final measured time, magnitude of surcharge loading, porosity ratio, internal friction angle, and others. Furthermore, a settlement prediction model of soft foundation based on random forest (RF) model was also developed. To enhance the accuracy of settlement prediction, the improved sparrow search algorithm (ISSA), which incorporates… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.