Molecular dynamics (MD) simulation was conducted for a DNB (1,3-dinitrobenzene) crystal, a ε- 4,6,8,10,4,6,8,10, crystal, a CL-20/DNB co-crystal and a CL-20/DNB composite. From the calculated maximum bond length (Lmax) of the N−NO2 trigger bond, the cohesive energy density (CED) and the binding energy (Ebind), it was found that the CL-20/DNB co-crystal is more insensitive than its composite. Its thermal stability is also better than that of its composite. The pair correlation function (PCF) analysis method was applied to investigate the interfaces between different molecular layers in the CL-20/DNB co-crystal, and in the composite. Additionally, the calculated mechanical data showed that the moduli of the CL-20/DNB co-crystal and its composite are smaller and their elastic elongation and ductility are better than those of the ε-CL-20 and DNB crystals.