An attempt has been carried out to prepare vanadia loaded TiO2 supported on MCM-41(V-TiO2/MCM-41) nanostructured photocatalysts using different surfactants. The surfactants used in the photocatalysts synthesis were dodecyl-trimethyl-ammonium bromide (DTAB), hexadecyl-trimethyl-ammonium bromide (CTAB) and octadecyl-trimethyl-ammonium bromide (STAB) which have varied carbon chains. The effect of crystallinity, surface area and porosity of the MCM-41 support on the physical-chemical properties of synthesized photocatalysts of vanadia loaded TiO2/MCM-41 and their photocatalytic performance were investigated. X-ray diffraction (XRD) patterns showed that the crystallinity of vanadia-TiO2/MCM-41 decreased with increasing of carbon-chain number of the surfactant used. Both surface area and pore volume of V-TiO2 increased significantly from 16.2 m2/g and 0.034 cm3/g to 864.3 m2/g and 0.618 cm3/g, respectively, after being loaded on MCM-41 support which was prepared using CTAB. It was demonstrated that all the V loaded TiO2/MCM-41 materials exhibited remarkable improvement in photocatalytic degradation of methylene blue (MB) under the irradiation of visible light as compared to that of bare TiO2 and V-TiO2. Among these materials, V-TiO2/MCM-41 which was synthesized using CTAB appeared to be the best photocatalyst with 57% of MB removal under visible light irradiation.