The mechanical properties of natural snow play a crucial role in understanding glaciers, avalanches, polar regions, and snow-related constructions. Research has concentrated on how the mechanical properties of snow vary, primarily with its density; the integration of cutting-edge techniques like micro-tomography with traditional loading methods can enhance our comprehension of these properties in natural snow. This study employs $$\mu$$
μ
CT imaging and uniaxial compression tests, along with the Digital Volume Correlation (DVC) to investigate the density-dependent material properties of natural snow. The data from two snow samples, one initially non-compressed (test 1) and the other initially compressed (test 2), were fed into Burger’s viscoelastic model to estimate the material properties. $$\mu$$
μ
CT imaging with 801 projections captures the three-dimensional structure of the snow initially and after each loading step at -18$${^\circ }$$
∘
C, using a constant deformation rate (0.2 mm/min). The relative density of the snow, ranging from 0.175 to 0.39 (equivalent to 160–360 kg/m$$^3$$
3
), is determined at each load step through binary image segmentation. Modulus and viscosity terms, estimated from Burger’s model, exhibit a density-dependent increase. Maxwell and Kelvin–Voigt moduli range from 0.5 to 14 MPa and 0.1 to 0.8 MPa, respectively. Viscosity values for the Maxwell and Kelvin–Voigt models vary from 0.2 to 2.9 GPa-s and 0.2 to 2.3 GPa-s within the considered density range, showing an exponent between 3 and 4 when represented as power functions. Initial grain characteristics for tests 1 and 2, obtained through image segmentation, reveal an average Specific Surface Area (SSA) of around 55 1/mm and 40 1/mm, respectively. The full-field strain distribution in the specimen at each load step is calculated using the DVC, highlighting strong strain localization indicative of non-homogeneous behavior in natural snow. These findings not only contribute to our understanding of natural snow mechanics but also hold implications for applications in fields such as glacier dynamics and avalanche prediction.