Study on the Influence of Label Image Accuracy on the Performance of Concrete Crack Segmentation Network Models
Kaifeng Ma,
Mengshu Hao,
Wenlong Shang
et al.
Abstract:A high-quality dataset is a basic requirement to ensure the training quality and prediction accuracy of a deep learning network model (DLNM). To explore the influence of label image accuracy on the performance of a concrete crack segmentation network model in a semantic segmentation dataset, this study uses three labelling strategies, namely pixel-level fine labelling, outer contour widening labelling and topological structure widening labelling, respectively, to generate crack label images and construct three… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.