The properties of magnetic nanoparticles (MNPs) of spinel ferrites CoxMn1-xFe2O4 (at x=0.0; 0.2; 0.3; 0.4; 0.5; 0.6; 0.8; 1.0) synthesized by chemical co-precipitation method have been studied. The studies of the synthesized CoxMn1-xFe2O4 MNPs were carried out using X-ray diffraction (XRD), Raman scattering and Mossbauer spectroscopy. The results of XRD, Raman and Mossbaur studies indicate that the obtained CoxMn1-xFe2O4 MNPs are single-phase. It was established from XRD measurements that the average size of CoxMn1-xFe2O4 crystallites is 34.86 nm for MnFe2O4 (x=0) and decreases to 14.99 nm for CoFe2O4 (x=1.0) with increasing Co ions concentration. An analysis of the Mossbaur spectra showed that the average crystallite size varies from 25 nm for MnFe2O4 (x=0) to 12 nm for CoFe2O4 (x=1.0). On the Raman spectra of CoxMn1-xFe2O4 MNPs, in the region of ~620 cm-1, splitting of the A1g line is observed, which means that the studied MNPs have a reverse spinel structure. The intensity ratio of the A1g (1) and A1g (2) peaks indicates a significant redistribution of the Co2+ and Fe3+ cations between tetra- and octahedralpositions in MNPs of the CoxMn1-xFe2O4 ferrite, which is confirmed by Mossbauer data. Mossbaur spectroscopy data indicate that the synthesized CoxMn1-xFe2O4 MNPs consist of large particles with magnetic ordering and small particles in the paramagnetic phase. With an increase in the concentration of Mn ions, the proportion of fine particles increases, which leads to a decrease in the magnetic blocking temperature. The saturation magnetization of MNPs at x=0.2 (Co0.2Mn0.8Fe2O4) is 57.41 emu/g and this sample, as was found in [V. Narayanaswamy, I.A. Al-Omari, A.S. Kamzin, B. Issa, H.O. Tekin, H. Khourshid, H. Kumar, A. Mallya, S. Sambasivam, I.M. Obaidat. Nanomaterials 11, 1231 (2021)] has the highest specific absorption rate. As shown by Mossbauer studies, this is due to the fact that these particles are in a superparamagnetic state and the magnetic blocking temperature of these MNPs is in the region of ~315 K, which is most suitable for the treatment of malignant tumors by magnetic hyperthermia. Thus, the synthesized CoxMn1-xFe2O4 MNPs are promising for biomedical applications. Keywords: spinel ferrites CoxMn1-xFe2O4, magnetic structure, superparamagnetism, Mossbauer spectroscopy, materials for biomedicine.