Pb–BHA complexes have been shown to be selective for the separation of tungsten and cassiterite minerals from calcium minerals. These minerals could be enriched synchronously to some extent using Pb–BHA complexes flotation. However, it is difficult to further improve the quality and recovery of the scheelite, wolframite, and cassiterite concentrate due to their different behavior in flotation, such as flotation rate and sensitivities to depressants. Moreover, the super fine particles create some challenges for the cleaning flotation process. In this study, advanced gravity separators for super fine particles were introduced for the cleaning process based on the slight difference in the specific gravity of scheelite, wolframite, and cassiterite. The new process featured pre-enrichment using Pb–BHA flotation, and upgrading using gravity separation, taking into account both the similarities and differences in floatability and density of the different minerals. The grades of WO3 and Sn in the concentrate of the new process reached to 61% and 2.89%, respectively, and the recovery of Sn was significantly improved. In addition, gravity separation is highly efficient, cost effective, and chemical-free, which is environmentally friendly. This study has proven that physical separation can be used for the purification of flotation products and provide some solutions for separation problems of complex refractory ores, which has, up until now, been rarely reported in the literature and/or applied in mineral processing.