When considering the contradictions between river management and protection in a typical plain river network, it is always confirmed that the river area has usually been encroached upon due to the development of human society. Based on the analysis of multiple attributes of the river network, a statistical model has been proposed in this study in order to determine the river network protection indices such as river area ratio, storage capacity and flux. In this study, a numerical method is proposed to improve the structure and connectivity of the river network by calculating the occupation and supplement balance. According to the principle of water area dynamic balance, the river network structure and its connectivity are improved through water area adjustment in a typical coastal city. As the simulation results show, the water surface ratio equals 8.17%, the storage capacity equals 112.6 million m3 and the water flux equals to 656.06 m3/s in the selected study area. The flood drainage capacity is introduced as the priority function, other functions are also improved due to river management and protection. The harmonious and sustainable coexistence between human society and the river network is then promoted. This comprehensive statistical model proved to be a good tool for the coastal area to enhance the comprehensive attributes of the coastal plain river network and the sustainable development of the local area in the future.