Blade pitch angle regulation is an effective approach to enhance the performance of H-type Darrieus Vertical Axis Wind Turbines (VAWTs). Improving the blade interaction with the wind for this type of rotor is a challenging task, especially in unsteady wind conditions. This paper presents a novel hybrid approach that integrates fixed and variable blade pitch angle regulation techniques, aiming to enhance the wind turbine efficiency across various operational stages and wind speeds. The proposed blade pitch angle regulation method targets a less complicated, mechanically feasible, and cost-effective pitching technique. This study uses the Double Multiple Streamtube (DMST) model to analyze the aerodynamic performance and calculate the power output generated at different pitch angles. MATLAB Simulink was utilized to implement the DMST model, and experimental validation was conducted to confirm the results. The findings indicate that the blade pitch angle regulation has significantly enhanced the self-starting ability of H-type Darrieus VAWT by 80%. Additionally, the maximum rotational speed and power coefficient are achieved at a zero pitch angle. Furthermore, regulating the blade pitch angle allows for the effective control of excessive rotational speeds during high wind conditions.