To address the inadequacies of mechanized potato-harvesting equipment on challenging terrains like hills, mountains, and small fields, a lightweight and simple self-propelled crawler potato combine harvester was developed based on the agronomic and harvesting requirements of potato cultivation. The machine consists of key components including a depth-limited soil-crushing device, an auxiliary feeding device, an excavation device, a rubber rod separation device, and a ton bag sorting device. It offers technical advantages such as a lightweight structure, auxiliary feeding and conveying, and manual assistance in sorting ton bags. The key components, such as the auxiliary feeding device, depth-limiting soil-crushing device, and rubber rod separation device, were analyzed theoretically to determine the relevant structures and parameters. Through initial harvesting performance tests, the separation screen line speed, vibration frequency, and device inclination angle were identified as the experimental factors. Evaluation indicators such as potato bruise rate, skin breakage rate, loss rate, and impurity content were chosen, and a three-factor, three-level Box–Behnken optimization test was conducted. The results indicated that with a separation screen line speed of 1 m/s, vibration frequency of 8 Hz, and device inclination angle of 30°, the potato damage rate during harvesting was 1.318%, the skin breakage rate was 1.825%, the loss rate was 2.815%, and the impurity rate was 2.736%. Field tests with the same parameters showed that the potato damage rate, skin breakage rate, loss rate, and impurity rate of the harvester were 1.357%, 1.853%, 2.86%, and 2.748%, respectively, meeting relevant industry technical standards. This research can serve as a reference for enhancing the harvesting performance of potato combine harvesters and ton bag sorting technology.