Soil salinization process is a complex non-linear dynamic evolution. To classify a system with this type of non-linear characteristic, this study proposed a mixed master/slave chaotic system based on Chua’s circuit and a fractional-order Chen-Lee chaotic system to classify soil salinization level. The subject is the soil in Xinjiang with different levels of human interference. A fractional-order Chen-Lee chaotic system was constructed, and the spectral signal processed by the Chua’s non-linear circuit was substituted into the master/slave chaotic system. The chaotic dynamic errors with different fractional orders were calculated. The comparative analysis showed that 0.1-order has the largest chaotic dynamic error change, which produced two distinct and divergent results. Thus, this study converted the chaotic dynamic errors of fractional 0.1-order into chaotic attractors to build an extension matter-element model. Finally, we compared the soil salt contents (SSC) from the laboratory chemical analysis with the results of the extension theory classification. The comparison showed that the combination of fractional order mixed master/slave chaotic system and extension theory has high classification accuracy for soil salinization level. The results of this system match the result of the chemical analysis. The classification accuracy of the calibration set data was 100%, and the classification accuracy of the validation set data was 90%. This method is the first use of the mixed master/slave chaotic system in this field and can satisfy certain soil salinization monitoring needs as well as promote the application of the chaotic system in soil salinization monitoring.