Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The Π-type steel-concrete composite girder, a commonly used bridge deck composed of an upper concrete slab and two lower lateral I-side steel girders, often suffers from severe vortex-induced vibrations (VIVs). Herein, the VIV response and triggering mechanism of a Π-type girder are systematically investigated, by adopting 1:50 scale section model wind tunnel tests and flow-field numerical simulations. Afterward, several aerodynamic measures were designed to mitigate the significant VIVs present in the original section, and an effective measure composed of the G-shaped apron and lower central stabilizer plate was found. Numerical simulation results show that the Π-type girder's upper and lower surfaces both exhibit severe vortex shedding, and both contribute significantly to the occurrence of VIVs. Consequently, the aerodynamic measures introduced for the Π-type girder must be able to simultaneously improve the flowing bypassing situation around the upper and lower surfaces of the section, and the G-shaped apron and the lower central stabilizer plate could both accomplish this simultaneously. The results show that the VIV suppression effect of this G-shaped apron combination measure is greatly affected by the height of the G-shaped apron's vertical plate and the height of the lower central stabilizer plate. Only both of them to a certain height, this measure can entirely prevent the Π-type girder from VIVs. After shape optimization, a G-shaped apron combination aerodynamic measure that can eliminate completely the Π-type girder's VIVs at low damping ratios of about 0.5% is proposed, of which the vibration-suppressing effect was verified by wind tunnel testing of 1:20 section model.
The Π-type steel-concrete composite girder, a commonly used bridge deck composed of an upper concrete slab and two lower lateral I-side steel girders, often suffers from severe vortex-induced vibrations (VIVs). Herein, the VIV response and triggering mechanism of a Π-type girder are systematically investigated, by adopting 1:50 scale section model wind tunnel tests and flow-field numerical simulations. Afterward, several aerodynamic measures were designed to mitigate the significant VIVs present in the original section, and an effective measure composed of the G-shaped apron and lower central stabilizer plate was found. Numerical simulation results show that the Π-type girder's upper and lower surfaces both exhibit severe vortex shedding, and both contribute significantly to the occurrence of VIVs. Consequently, the aerodynamic measures introduced for the Π-type girder must be able to simultaneously improve the flowing bypassing situation around the upper and lower surfaces of the section, and the G-shaped apron and the lower central stabilizer plate could both accomplish this simultaneously. The results show that the VIV suppression effect of this G-shaped apron combination measure is greatly affected by the height of the G-shaped apron's vertical plate and the height of the lower central stabilizer plate. Only both of them to a certain height, this measure can entirely prevent the Π-type girder from VIVs. After shape optimization, a G-shaped apron combination aerodynamic measure that can eliminate completely the Π-type girder's VIVs at low damping ratios of about 0.5% is proposed, of which the vibration-suppressing effect was verified by wind tunnel testing of 1:20 section model.
The lower semi‐open box (LSOB) girder is widely used in large‐span bridges due to its favorable stress performance and cost‐effectiveness. The vortex‐induced vibration (VIV) of the LSOB girder was studied by using a 1:55 section model wind tunnel test. The test results show that there are obvious vertical and torsional VIV intervals with significant amplitudes at each angle of attack with the damping ratios of about 0.35%. The CFD numerical simulations indicate that VIVs of LSOB girders are mainly induced by two types of vortices: one at the inclined webs of leeward wind nozzles and another at the upstream upper surfaces of the deck. Conventional aerodynamic vibration suppression measures, such as the lower central stabilizing plate and the guide vane at the gantry rail, demonstrate that the lower central stabilizing plate can reduce the VIV response at all wind angles of attack, decreasing vertical amplitude by 40%–50% and torsional amplitude by 10%–25%. Although adding a guide vane further optimizes the VIV performance, its effect is limited. Installing the lower central stabilizing plate helps redistribute vortices below the girder, transforming large vortices into smaller ones, most of which do not detach, thereby reducing vortex shedding intensity in the wake area. The bilateral guide vanes at the maintenance car track further weaken the wake vortices at the diagonal webs on the leeward side.
A long-span double-deck steel truss suspension bridge is easy to produce vortex-induced vibration (VIV) at low air velocity, which affects bridge service life. Additional aerodynamic measures play a role in suppressing VIV by changing the aerodynamic shape, which is a common control method. As the main aerodynamic measure to suppress the VIV response, wind fairing is widely used in engineering practice. In order to obtain the optimal additional position and shape parameters of the fairing, Huangjuetuo Yangtze River Bridge is the research target. Through the combination of a wind tunnel test and numerical simulation, the VIV response of the original and fairing section is studied. Based on data analysis, it is revealed that these additional fairings to the upper chord can significantly reduce the VIV response. When the shape parameters of the fairing are h/D = 1/4 and l/D = 1, the VIV inhibition efficiency is the highest, which can reach 65.51%. By analyzing the flow distribution, it can be seen that VIV is caused mainly by vortex separation in the upper bridge board area. Although this wind fairing does not change the original vortex shedding forms, it changes the first separation point and movement direction of the airflow, making the vortex scale generated by the airflow smaller and the vorticity lower, thus effectively suppressing VIV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.