2021
DOI: 10.1016/j.envc.2021.100204
|View full text |Cite
|
Sign up to set email alerts
|

Studying temporal variations of indoor radon as a vital step towards rational and harmonized international regulation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
55
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

2
3

Authors

Journals

citations
Cited by 11 publications
(55 citation statements)
references
References 13 publications
0
55
0
Order By: Relevance
“…Since U V and U D are the main and independent components of the combined uncertainty U(C), the condition (7) can be presented in more detail as a criterion for conformity assessment of a room with a norm 5,6 :normalC)(t·][1goodbreak+UVt2+normalUnormalD2<CRL,providing probability of0.25em95%$$ \mathrm{C}\left(\mathrm{t}\right)\cdotp \left[1+\sqrt{{\mathrm{U}}_{\mathrm{V}}{(t)}^2+{{\mathrm{U}}_{\mathrm{D}}}^2}\right]<{\mathrm{C}}_{\mathrm{RL}},\mathrm{providing}\ \mathrm{probability}\ \mathrm{of}\ 95\% $$ Assuming U D = 0 in, (8) and considering (4) and, (6) then for the case of log‐normal distribution we obtain equations connecting GSD and COV to the temporal uncertainty of indoor radon:UVgoodbreak=GSD2·exp][0.5·ln2)(GSD1,and$$ {\mathrm{U}}_{\mathrm{V}}={\mathrm{GSD}}^2\cdotp \exp \left[0.5\cdotp {\ln}^2\left(\mathrm{GSD}\right)\right]\hbox{--} 1,\mathrm{and} $$ UVgoodbreak=COV+12·exp][0.5·ln2)(COVgoodbreak+11.$$ {\mathrm{U}}_{\mathrm{V}}={\left(\mathrm{COV}+1\right)}^2\cdotp \exp \left[0.5\cdotp {\ln}^2\left(\mathrm{COV}+1\right)\right]\hbox{--} 1. $$ Obviously, for the normal distribution:UVgoodbreak=2·SD/AMgoodbreak=2·COV.$$ {\mathrm{U}}_{\mathrm{V}}=2\cdotp \mathrm{SD}/\mathrm{AM}=2\cdotp \mathrm{COV}.…”
Section: Methods and Original Datamentioning
confidence: 99%
See 4 more Smart Citations
“…Since U V and U D are the main and independent components of the combined uncertainty U(C), the condition (7) can be presented in more detail as a criterion for conformity assessment of a room with a norm 5,6 :normalC)(t·][1goodbreak+UVt2+normalUnormalD2<CRL,providing probability of0.25em95%$$ \mathrm{C}\left(\mathrm{t}\right)\cdotp \left[1+\sqrt{{\mathrm{U}}_{\mathrm{V}}{(t)}^2+{{\mathrm{U}}_{\mathrm{D}}}^2}\right]<{\mathrm{C}}_{\mathrm{RL}},\mathrm{providing}\ \mathrm{probability}\ \mathrm{of}\ 95\% $$ Assuming U D = 0 in, (8) and considering (4) and, (6) then for the case of log‐normal distribution we obtain equations connecting GSD and COV to the temporal uncertainty of indoor radon:UVgoodbreak=GSD2·exp][0.5·ln2)(GSD1,and$$ {\mathrm{U}}_{\mathrm{V}}={\mathrm{GSD}}^2\cdotp \exp \left[0.5\cdotp {\ln}^2\left(\mathrm{GSD}\right)\right]\hbox{--} 1,\mathrm{and} $$ UVgoodbreak=COV+12·exp][0.5·ln2)(COVgoodbreak+11.$$ {\mathrm{U}}_{\mathrm{V}}={\left(\mathrm{COV}+1\right)}^2\cdotp \exp \left[0.5\cdotp {\ln}^2\left(\mathrm{COV}+1\right)\right]\hbox{--} 1. $$ Obviously, for the normal distribution:UVgoodbreak=2·SD/AMgoodbreak=2·COV.$$ {\mathrm{U}}_{\mathrm{V}}=2\cdotp \mathrm{SD}/\mathrm{AM}=2\cdotp \mathrm{COV}.…”
Section: Methods and Original Datamentioning
confidence: 99%
“…42 b Derived from the other UK results. 42 According to the expression of the lower limit of the interval for log-normal distribution (GM/GSD 2 ) and taking into account (5), RL in the test room will not be exceeded with a probability of 95%, if the measurement result C meets the condition:…”
Section: Two Months 29%mentioning
confidence: 99%
See 3 more Smart Citations