“…Several studies on cortical activation by somatosensory stimuli have been reported (Yetkin et al 1995;Weiller et al 1996;Gelnar et al 1998;Hansson and Brismar 1999;Mima et al 1999;Stippich et al 1999;Francis et al 2000Francis et al , 2009Harrington and Hunter Downs 2001;Radovanovic et al 2002;Bingel et al 2004;Overduin and Servos 2004;Jousmaki et al 2007;Stoeckel et al 2007;Dresel et al 2008;Weibull et al 2008;Chang et al 2009;Szameitat et al 2012;Hao et al 2013). However, only a few studies have demonstrated differences in cortical activation patterns with application to different body areas, as in the current study (Gelnar et al 1998;Harrington and Hunter Downs 2001;Bingel et al 2004).…”
Section: Discussionmentioning
confidence: 47%
“…Since the introduction of functional neuroimaging techniques, many studies have reported on cortical responses to specific somatosensory stimuli in the human brain (Yetkin et al 1995;Weiller et al 1996;Gelnar et al 1998;Hansson and Brismar 1999;Mima et al 1999;Stippich et al 1999;Francis et al 2000Francis et al , 2009Harrington and Hunter Downs 2001;Radovanovic et al 2002;Bingel et al 2004;Overduin and Servos 2004;Jousmaki et al 2007;Stoeckel et al 2007;Dresel et al 2008;Weibull et al 2008;Chang et al 2009;Szameitat et al 2012;Hao et al 2013). In more detail, these studies have demonstrated cortical activation patterns by proprioceptive stimulation by passive movement (Weiller et al 1996;Mima et al 1999;Radovanovic et al 2002;Francis et al 2009;Szameitat et al 2012), vibration (Gelnar et al 1998;Francis et al 2000;Harrington and Hunter Downs 2001), electrical stimulation (Stoeckel et al 2007;Weibull et al 2008;Francis et al 2009;Hao et al 2013), stimulation by pneumatic compression (Stippich et al 1999;Overduin and Servos 2004), tactile stimulation (Yetkin et al 1995;Harrington and Hunter Downs 2001;Jousmaki et al 2007;Dresel et al 2008;…”
Section: Introductionmentioning
confidence: 99%
“…In more detail, these studies have demonstrated cortical activation patterns by proprioceptive stimulation by passive movement (Weiller et al 1996;Mima et al 1999;Radovanovic et al 2002;Francis et al 2009;Szameitat et al 2012), vibration (Gelnar et al 1998;Francis et al 2000;Harrington and Hunter Downs 2001), electrical stimulation (Stoeckel et al 2007;Weibull et al 2008;Francis et al 2009;Hao et al 2013), stimulation by pneumatic compression (Stippich et al 1999;Overduin and Servos 2004), tactile stimulation (Yetkin et al 1995;Harrington and Hunter Downs 2001;Jousmaki et al 2007;Dresel et al 2008;Chang et al 2009), and nociceptive stimulation (Bingel et al 2004). However, little is known about differences in cortical activation according to body location (Gelnar et al 1998;Harrington and Hunter Downs 2001;Bingel et al 2004).…”
We found that stimulation of the palm resulted in more cortical activation in the contralateral SM1 than stimulation of the dorsum. Our results suggested that the palm of the hand might have larger somatotopy of somatosensory representation for touch in the cerebral cortex than the dorsum of the hand. Our results would be useful as a rehabilitation strategy when more or less somatosensory stimulation of the hand is necessary.
“…Several studies on cortical activation by somatosensory stimuli have been reported (Yetkin et al 1995;Weiller et al 1996;Gelnar et al 1998;Hansson and Brismar 1999;Mima et al 1999;Stippich et al 1999;Francis et al 2000Francis et al , 2009Harrington and Hunter Downs 2001;Radovanovic et al 2002;Bingel et al 2004;Overduin and Servos 2004;Jousmaki et al 2007;Stoeckel et al 2007;Dresel et al 2008;Weibull et al 2008;Chang et al 2009;Szameitat et al 2012;Hao et al 2013). However, only a few studies have demonstrated differences in cortical activation patterns with application to different body areas, as in the current study (Gelnar et al 1998;Harrington and Hunter Downs 2001;Bingel et al 2004).…”
Section: Discussionmentioning
confidence: 47%
“…Since the introduction of functional neuroimaging techniques, many studies have reported on cortical responses to specific somatosensory stimuli in the human brain (Yetkin et al 1995;Weiller et al 1996;Gelnar et al 1998;Hansson and Brismar 1999;Mima et al 1999;Stippich et al 1999;Francis et al 2000Francis et al , 2009Harrington and Hunter Downs 2001;Radovanovic et al 2002;Bingel et al 2004;Overduin and Servos 2004;Jousmaki et al 2007;Stoeckel et al 2007;Dresel et al 2008;Weibull et al 2008;Chang et al 2009;Szameitat et al 2012;Hao et al 2013). In more detail, these studies have demonstrated cortical activation patterns by proprioceptive stimulation by passive movement (Weiller et al 1996;Mima et al 1999;Radovanovic et al 2002;Francis et al 2009;Szameitat et al 2012), vibration (Gelnar et al 1998;Francis et al 2000;Harrington and Hunter Downs 2001), electrical stimulation (Stoeckel et al 2007;Weibull et al 2008;Francis et al 2009;Hao et al 2013), stimulation by pneumatic compression (Stippich et al 1999;Overduin and Servos 2004), tactile stimulation (Yetkin et al 1995;Harrington and Hunter Downs 2001;Jousmaki et al 2007;Dresel et al 2008;…”
Section: Introductionmentioning
confidence: 99%
“…In more detail, these studies have demonstrated cortical activation patterns by proprioceptive stimulation by passive movement (Weiller et al 1996;Mima et al 1999;Radovanovic et al 2002;Francis et al 2009;Szameitat et al 2012), vibration (Gelnar et al 1998;Francis et al 2000;Harrington and Hunter Downs 2001), electrical stimulation (Stoeckel et al 2007;Weibull et al 2008;Francis et al 2009;Hao et al 2013), stimulation by pneumatic compression (Stippich et al 1999;Overduin and Servos 2004), tactile stimulation (Yetkin et al 1995;Harrington and Hunter Downs 2001;Jousmaki et al 2007;Dresel et al 2008;Chang et al 2009), and nociceptive stimulation (Bingel et al 2004). However, little is known about differences in cortical activation according to body location (Gelnar et al 1998;Harrington and Hunter Downs 2001;Bingel et al 2004).…”
We found that stimulation of the palm resulted in more cortical activation in the contralateral SM1 than stimulation of the dorsum. Our results suggested that the palm of the hand might have larger somatotopy of somatosensory representation for touch in the cerebral cortex than the dorsum of the hand. Our results would be useful as a rehabilitation strategy when more or less somatosensory stimulation of the hand is necessary.
“…In comparison, computed tomography (CT) or magnetic resonance imaging (MRI) provides structural/anatomical information. Functional magnetic resonance imaging (fMRI), relying on blood flow, oxygenation changes, measures neuronal activity only indirectly [3]. By measuring these magnetic fields, scientists can accurately pinpoint the location of the cells/zones of the brain that produce each field.…”
“…MEG outweighs EEG's ability to localize neuronal activity and resolve events with a higher temporal precision than fMRI. In addition, anatomical localization by MEG is acceptable even when compared with fMRI [Kandori et al, 2003;Stoeckel et al, 2007;Ilg, 2008;Nevalainen et al, 2014].…”
Purpose: To investigate the spatiotemporal evolution of cortical activation during the initiation of optokinetic nystagmus using magnetoencephalography. Background: Previous imaging studies of optokinetic nystagmus in humans using positron emission tomography and functional magnetic resonance imaging discovered activation of a large set of cortical and subcortical structures during steady-state optokinetic stimulation, but did not provide information on the temporal dynamics of the initial response. Imaging studies have shown that cortical areas responsible for vision in occipital and temporo-occipital areas are involved, i.e. cortical areas control optokinetic stimulation in humans. Magnetoencephalography provides measures that reflect neural ensemble activity in the millisecond time scale, allowing the identification of early cortical components of visuomotor integration. Design/Methods: We studied neuromagnetic cortical responses during the initiation of optokinetic nystagmus in 6 right-handed healthy subjects. Neuromagnetic activity was recorded with a whole-head magnetoencephalograph, consisting of 143 planar gradiometers. Results: The mean (±SD) latency between stimulus onset and initiation of optokinetic nystagmus was 177.7 ± 59 ms. Initiation of optokinetic nystagmus evoked an early component in the primary visual cortex starting at 40-90 ms prior to the onset of the slow phase of nystagmus. Almost simultaneously an overlapping second component occurred bilaterally in the temporo-occipital area (visual motion areas), pronounced in the right hemisphere, starting at 10-60 ms prior to the slow-phase onset. Both components showed long-duration activity lasting for up to 100 ms after slow-phase onset. Conclusions: Our findings suggest that the initiation of optokinetic nystagmus induces early cortical activation in the occipital cortex and almost simultaneously bilaterally in the temporo-occipital cortex. These cortical regions might represent essential areas for the monitoring of retinal slip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.