The aim of this work is to investigate the clinical impact of detector size effect on patient specific intensity-modulated radiation therapy (IMRT) quality assurance (QA). Two photon beam models, BM6 and BM4, were commissioned using photon beam profiles measured with a 6 mm diameter and a 4 mm diameter ion chambers, respectively. A method was developed to extract the "true" cross beam profiles, free of volume averaging effect, using analytic fitting/deconvolution. The method was validated using beam profiles measured with a small (0.8 mm) diode detector for small (< or = 10 x 10 cm2) field sizes. These profiles were used to commission a third beam model (BM08). Planar dose distributions for eight IMRT plans (total of 53 fields) were calculated using the three beam models and measured with a two-dimensional detector array. Analysis using percent dose difference and distance-to-agreement criteria between the calculation and measurement was done to benchmark the performance of each beam model. The average passing rates between calculation and measurement were 93.8%, 98.9%, and 99.4% for BM6, BM4, and BM08, respectively, when 3%/3 mm criteria were used. A gradual increase in passing rates was noticed with the decrease in the size of the detector used to collect commissioning data. When 2%/2 mm criteria were used, the average passing rates increased significantly from 81.6% (BM6) to 92.6% (BM4) and 96.8% (BM08). These results quantify the enhancement of IMRT dose calculation accuracy with the reduction in detector size used for photon beam profiles measurement. Our study indicates that volume averaging effect can significantly affect the results of IMRT patient specific QA. By removing the detector size effect in beam commissioning, excellent passing rates can be achieved with more stringent criteria such as 2%/2 mm. The use of more stringent criteria for IMRT patient specific QA would likely result in higher chances of detecting any dosimetric errors arising from the treatment planning or delivery system.