Rock mass stability is often affected by water–rock interaction in underground engineering construction. Cretaceous sandstones often have weak cementation, low strength and strong water-holding capacity, and their rock mass strength is easily weakened by these activities. In this paper, the uniaxial compressive strength (UCS) and tensile strength (TS) of weakly cemented Cretaceous sandstones from different sedimentary facies under natural and saturated conditions were tested, and the loading process was monitored by the acoustic emission (AE) technique. The results show that the existence of water obviously weakened the mechanical properties of weakly cemented sandstone. The UCS and TS of saturated braided river facies sandstone decreased to 41.24% and 35.95% of their natural states, respectively, while those of desert facies sandstone decreased to 32.90% and 26.98% of their natural states, respectively. The AE characteristics of sandstone from different sedimentary facies were similar during loading due to weakening by water, including a decrease in cumulative AE energy, b-value fluctuation and reduction in the peak frequency distribution range. Fracture in the Brazilian splitting test was mainly due to the rapid initiation and coalescence of microcracks near the peak point. However, in the uniaxial compression test, the macro fractures were caused by many microcracks that occurred continuously during loading and finally connected. The high quartz and low feldspar contents strengthened the mechanical properties of braided fluvial facies sandstone compared to those of desert facies sandstone and lessened the effect of water weakening.