Nonnegative solutions of the Neumann initial-boundary value problem for the chemotaxis system in smooth bounded domains $$\Omega \subset {\mathbb {R}}^n$$
Ω
⊂
R
n
, $$n \ge 1$$
n
≥
1
, are known to be global in time if $$\lambda \ge 0$$
λ
≥
0
, $$\mu > 0$$
μ
>
0
and $$\kappa > 2$$
κ
>
2
. In the present work, we show that the exponent $$\kappa = 2$$
κ
=
2
is actually critical in the four- and higher dimensional setting. More precisely, if $$\begin{aligned} \qquad n&\ge 4,&\quad \kappa \in (1, 2) \quad&\text {and} \quad \mu > 0 \\ \text {or}\qquad n&\ge 5,&\quad \kappa = 2 \quad&\text {and} \quad \mu \in \left( 0, \frac{n-4}{n}\right) , \end{aligned}$$
n
≥
4
,
κ
∈
(
1
,
2
)
and
μ
>
0
or
n
≥
5
,
κ
=
2
and
μ
∈
0
,
n
-
4
n
,
for balls $$\Omega \subset {\mathbb {R}}^n$$
Ω
⊂
R
n
and parameters $$\lambda \ge 0$$
λ
≥
0
, $$m_0 > 0$$
m
0
>
0
, we construct a nonnegative initial datum $$u_0 \in C^0({{\overline{\Omega }}})$$
u
0
∈
C
0
(
Ω
¯
)
with $$\int \nolimits _\Omega u_0 = m_0$$
∫
Ω
u
0
=
m
0
for which the corresponding solution (u, v) of ($$\star $$
⋆
) blows up in finite time. Moreover, in 3D, we obtain finite-time blow-up for $$\kappa \in (1, \frac{3}{2})$$
κ
∈
(
1
,
3
2
)
(and $$\lambda \ge 0$$
λ
≥
0
, $$\mu > 0$$
μ
>
0
). As the corner stone of our analysis, for certain initial data, we prove that the mass accumulation function $$w(s, t) = \int \nolimits _0^{\root n \of {s}} \rho ^{n-1} u(\rho , t) \,\mathrm {d}\rho $$
w
(
s
,
t
)
=
∫
0
s
n
ρ
n
-
1
u
(
ρ
,
t
)
d
ρ
fulfills the estimate $$w_s \le \frac{w}{s}$$
w
s
≤
w
s
. Using this information, we then obtain finite-time blow-up of u by showing that for suitably chosen initial data, $$s_0$$
s
0
and $$\gamma $$
γ
, the function $$\phi (t) = \int \nolimits _0^{s_0} s^{-\gamma } (s_0 - s) w(s, t)$$
ϕ
(
t
)
=
∫
0
s
0
s
-
γ
(
s
0
-
s
)
w
(
s
,
t
)
cannot exist globally.